ON THE INVARIANCE OF q-CONVEXITY AND HYPERCONVEXITY UNDER FINITE HOLOMORPHIC SURJECTIONS

NGUYEN VAN KHUE AND LE VAN THANH

ABSTRACT. In this note we have proved that 0-convexity and hyperconvexity are invariant under finite holomorphic surjections. Invariance of cohomological q-convexity for the case of finite dimension also has been established.

It is known [7] that Steinness is invariant under finite holomorphic surjections. In this note we investigate the invariance property for 0-convexity generally, for cohomological completeness, for cohomological q-convexity of finite dimension, and for hyperconvexity.

- 1. The invariance of 0-convexity. We recall that a complex space X is called q-convex if there exists an exhaustion function φ on X which is strictly q-pseudoconvex outside some compact $K \subset X$. It is known [2] that X is 0-convex if and only if there exists a proper holomorphic map θ from X onto a Stein space S such that $\theta_* \mathcal{O}_X \simeq \mathcal{O}_S$ and θ is biholomorphic outside some set of the form $\theta^{-1}A$, where A is a finite subset of S. The proper surjection θ : $X \to S$ with S is Stein, such that $\theta_* \mathcal{O}_X \simeq \mathcal{O}_S$ is said to be the Remmert reduction of X. By [2] if X is holomorphically convex then there exists a Remmert reduction. In this section we prove the following theorem.
- 1.1 THEOREM. Let φ : $X \to Y$ be a finite holomorphic surjective map. Then Y is 0-convex if and only if X is.

The proof of Theorem 1.1 is based on the following assertion, essentially as in [9].

1.2 ASSERTION. A complex space X is 0-convex if and only if dim $H^1(X, \mathcal{S}) < \infty$ for every coherent ideal subsheaf $\mathcal{S} \subset \mathcal{O}_{Y}$.

PROOF. The necessity follows from a theorem of Andreotti-Grauert [1].

Conversely, assume that dim $H^1(X, \mathcal{S}) < \infty$ for every coherent ideal subsheaf \mathcal{S} of \mathcal{O}_X . We have to prove that X is 0-convex.

First we show that X is holomorphically convex. Let $V = \{x_n\}_{n=1}^{\infty}$ be a discrete sequence in X and let J_V denote the ideal subsheaf of \mathcal{O}_X associated to V. Consider the exact sequence:

$$(1) \hspace{1cm} 0 \to J_V \to \mathcal{O}_X \overset{\eta}{\to} \tilde{\mathcal{O}}V \to 0.$$

Received by the editors April 3, 1984 and, in revised form, May 6, 1985. 1980 *Mathematics Subject Classification*. Primary 32F10; Secondary 32H35.

By hypothesis and by exactness of the cohomology sequence associated to (1) we get

(2)
$$\dim \mathcal{O}(V)/\operatorname{Im} \eta = \dim C^{\infty}/\operatorname{Im} \eta < \infty.$$

Let $l_{\infty}(V)$ denote the subspace of $\mathcal{O}(V)$ consisting of bounded functions on V. Then $\dim C^{\infty}/l_{\infty}(V)=\infty$. Thus by (2) it follows that $\operatorname{Im} \eta \setminus l_{\infty}(V) \neq \emptyset$. This implies that $\sup |f(x_n)|=\infty$ for some $f\in \mathcal{O}(X)$. Hence X is holomorphically convex.

Let θ : $X \to S$ be the Remmert reduction of X. To prove that X is 0-convex it suffices to show that θ : $X \setminus K \to S \setminus \theta(K)$ is injective for some compact set $K \subset X$. For a contradiction suppose there is a discrete set $V = \{x_n, y_n\}_{n=1}^{\infty}$ such that $\theta(x_n) = \theta(y_n)$ for every $n \ge 1$. For each n let $\sigma_n \in \mathcal{O}(V)$ be given by the formula

$$\sigma_n(x_n) = 1, \quad \sigma_n | V - x_n = 0.$$

Since $\theta_* \mathcal{O}_X \simeq \mathcal{O}_S$ it is easy to see that $\{\sigma_n \mod \eta\}$ (n = 1, 2, ...) is linearly independent in $\mathcal{O}(V)/\operatorname{Im} \eta$. This contradicts (2). Hence Assertion 1.2 is proved.

1.3 ASSERTION. Let θ : $X \to Y$ be an *n*-analytic covering and let Y be normal. Then for every coherent ideal subsheaf $\mathscr S$ of $\mathscr O_Y$ there exists a morphism Q: $\theta_*\theta^*\mathscr S \to \mathscr S$ such that $Qe = \mathrm{id}$, where e: $\mathscr S \to \theta_*\theta^*\mathscr S$ is the canonical injection.

PROOF. Let $V \subset Y$ be the branch locus of θ and let $U \subset Y$ be a Stein open subset of Y on which there exists an exact sequence

$$\mathcal{O}_{Y}^{q} \to \mathcal{O}_{Y}^{p} \xrightarrow{\eta} \mathcal{S} \to 0.$$

Then the sequence

(5)
$$\theta^* \mathcal{O}_Y^q \to \theta^* \mathcal{O}_Y^{\tilde{\eta}} \to \theta^* \mathcal{S} \to 0$$

is also exact. Note that $\theta^* \mathcal{O}_Y^m \simeq \mathcal{O}_X^m$ for every $m \ge 1$.

Consider $\sigma \in H^0(U, \theta_*\theta^*\mathscr{S}) = H^0(\theta^{-1}(U), \mathscr{S})$. Since $\theta^{-1}(U)$ is Stein [7] we can find $\beta \in H^0(\theta^{-1}(U), \theta_X^g)$ such that $\tilde{\eta}\beta = \sigma$. Since Y is normal, the formula $P_U(\beta)(z) = (1/n)\sum_{j=1}^n \beta(x_j)$ for $z \in U \setminus V$ where $\theta^{-1}(z) = \{x_1, x_2, \dots, x_n\}$, defines an element $P_U(\beta) \in \mathcal{O}_Y^g(U)$. Put

(6)
$$Q_U(\sigma) = \eta P_U(\beta).$$

It is easy to see that $Q_U(\sigma)$ is independent of choice of $\beta \in H^0(\theta^{-1}(U), \mathcal{O}_X^p)$, $\tilde{\eta}\beta = \sigma$, and $Q_U(\sigma) = \sigma$ for all $\sigma \in H^0(U, \mathscr{S})$.

Assume now that

(7)
$$\mathcal{O}_{\mathbf{k}'}^{q'} \to \mathcal{O}_{\mathbf{k}'}^{q'} \to \mathcal{S} \to 0$$

in another exact sequence on U. Then there exists a commutative diagram:

By the commutativity of (8) it follows that Q_U is independent of choice of presentation. Hence $Q = \{Q_U\}$ defines a morphism $Q \colon \theta_* \theta^* \mathscr{S} \to \mathscr{S}$ such that $Qe = \mathrm{id}$. Assertion 1.3 is proved.

Now we are able to prove Theorem 1.1. Assume that Y is 0-convex. Since φ is proper it follows that X is holomorphically convex. Considering the commutative diagram

$$(9) X \xrightarrow{\varphi} Y$$

$$\theta_X \downarrow \qquad \qquad \downarrow \theta_Y$$

$$S_X \xrightarrow{\tilde{\varphi}} S_Y$$

where θ_X and θ_Y are Remmert reductions of X and Y respectively, it is easy to see that θ_X is biholomorphic outside some compact set K in X. Hence X is 0-convex.

Conversely, assume that X is 0-convex. We prove that Y is also 0-convex.

(a) First we consider the case, where dim $Y < \infty$.

We assume that the theorem has been proved for all complex spaces Y of dimension < m. Now assume that dim Y = m. Consider the commutative diagram:

$$(X \times_{Y} \tilde{Y})_{\text{red}} \stackrel{\tilde{\varphi}}{\to} \tilde{Y}$$

$$\downarrow \eta \qquad \qquad \downarrow \nu$$

$$X \stackrel{\tilde{\varphi}}{\to} Y$$

of finite holomorphic surjective maps, where \tilde{Y} is the normalization of Y. By the necessary condition already proved, $(X \times_Y \tilde{Y})_{\text{red}}$ is 0-convex. On the other hand, since $\tilde{\varphi}$ is finite and \tilde{Y} normal it follows that $\tilde{\varphi}$ is a finite analytic n-covering for some n [4]. Thus by 1.2 and 1.3 we infer that \tilde{Y} is 0-convex. To prove that Y is 0-convex by 1.2 it suffices to show that dim $H^1(Y, \mathcal{S}) < \infty$ for every coherent ideal subsheaf \mathcal{S} of \mathcal{O}_Y . Let $\tilde{\mathcal{O}}_Y$ denote the coherent analytic sheaf of germs of weakly holomorphic functions on Y [4]. Put $\mathcal{D} = \mathcal{O}_Y : \tilde{\mathcal{O}}_Y$. Note that $v_* \mathcal{O}_{\tilde{Y}} = \tilde{\mathcal{O}}_Y$ and supp $\theta_Y/\mathcal{D} = N(Y)$ where N(Y) denotes the nonnormal locus of Y. Let \mathcal{V} be the coherent ideal subsheaf of $\mathcal{O}_{\tilde{Y}}$ which is the image of $v^*\mathcal{D}\mathcal{S} = v^{-1}(\mathcal{D}\mathcal{S}) \otimes_{v^{-1}\mathcal{O}_Y} \mathcal{O}_{\tilde{Y}}$ under multiplication. By using the definition of \mathcal{D} it follows that $v_*\mathcal{V} \subset \mathcal{S}$ and since \tilde{Y} is 0-convex and v is finite we have [4]

(11)
$$\dim H^1(Y, \nu_*, \mathscr{V}) = \dim H^1(\tilde{Y}, \mathscr{V}) < \infty.$$

Since ν is biholomorphic outside $\nu^{-1}(N(Y))$ it follows that

(12)
$$\operatorname{supp} \mathscr{S}/\nu_* \mathscr{V} \subset N(Y).$$

Thus, using the induction hypothesis we get

(13)
$$\dim H^1(Y, \mathcal{G}/\nu_*\mathcal{V}) = \dim H^1(N(Y), \mathcal{G}/\nu_*\mathcal{V}) < \infty.$$

By (11) and (13) and by the exactness of the cohomology sequence associated to the exact sequence

$$0 \to \nu_* \mathscr{V} \to \mathscr{S} \to \mathscr{S} / \nu_* \mathscr{V} \to 0,$$

we infer that dim $H^1(Y, \mathcal{S}) < \infty$.

(b) In the general case, let $Y = \bigcup_{j=1}^{\infty} V_j$, where V is an irreducible branch of Y for any $j \ge 1$. Since $\tilde{Y} = \coprod_{1}^{\infty} \tilde{V}_j$, by the 0-convexity of \tilde{Y} it is easy to see that there exists j_0 such that \tilde{V}_j is Stein for every $j > j_0$. Hence V_j is also Stein for every $j > j_0$.

Put

$$Y_0 = \bigcup_{j=1}^{j_0} V_j, \quad Y_k = Y_0 \cup \bigcup_{j=1}^k V_{j_0+j}.$$

By (a) Y_k is 0-convex for every $k \ge 0$.

If Y_0 is Stein then Y is Stein by [7]. Now we assume that Y_0 is 0-convex non-Stein. Thus Y_k is 0-convex non-Stein for every $k \ge 0$. Let θ_k : $Y_k \to S_k$ be the Remmert reduction of Y_k . Then we have the following diagram:

$$Y_0 \stackrel{i_0}{\rightarrow} Y_1 \stackrel{i_1}{\rightarrow} Y_2 \stackrel{i_2}{\rightarrow} \cdots$$
 $\theta_0 \downarrow \qquad \downarrow \theta_1 \qquad \downarrow \theta_2$
 $S_0 \stackrel{}{\rightarrow} S_1 \stackrel{}{\rightarrow} S_2 \stackrel{}{\rightarrow} \cdots$

Let A_k be a finite subset of S_k such that θ_k : $Y_k - \theta_k^{-1}(A_k) \to S_k - A_k$ is biholomorphic. Since Y_k non-Stein, $\theta_k^{-1}(y)$ is connected of positive dimension for every $y \in A_k$ [2]. Then, since $\bigcup_{j>j_0} V_j$ is Stein, and $\theta_k^{-1}(A_k)$ is compact connected of positive dimension, it follows that

(14)
$$\theta_k^{-1}(A_k) = \theta_0^{-1}(A_0)$$
 for every $k \ge 0$.

From (14) it is easy to see that there exists k_0 such that

(15)
$$\tilde{i}_k$$
 is proper injective and $\theta_0^{-1}(A_0) \subset \text{Int } Y_k$ for every $k = k_0$.

Put $S = \lim_{N \to \infty} S_k$ and $\theta = \lim_{N \to \infty} \theta_k$: $Y \to S$. By (14)(15) we infer that θ is proper, $\theta \mid Y \setminus \theta_0^{-1}(A_0)$ is biholomorphic, and $\theta_* \mathcal{O}_Y = \mathcal{O}_S$. Moreover, since $S = \lim_{N \to \infty} \tilde{i}_k(S_k)$ where $\tilde{i}_k(S_k)$ are Stein closed subspaces of S, it follows that S is holomorphically separated and holomorphically convex and thereby S is Stein. Hence Y is 0-convex. This completes the proof of Theorem 1.1.

The following is an immediate consequence of Theorem 1.1.

- 1.4 COROLLARY. A complex space X is 0-convex if and only if all its irreducible branches, except for finitely many which are 0-convex, are Stein.
- 1.5 COROLLARY. Let θ : $X \to Y$ be a proper holomorphic surjective map which is finite outside a compact set. Then X is 0-convex if and only if Y is.

PROOF. Assume that Y is 0-convex. Considering the commutative diagram (9) it is easy to see that θ_X is finite outside a compact set. Hence by the Steinness of S_X we infer that X is 0-convex. Now assume that X is 0-convex. Consider the commutative diagram (16)

(16)
$$\begin{array}{ccc} X & \stackrel{\theta}{\to} & Y \\ \theta_X \downarrow & \stackrel{\eta}{\searrow} & \uparrow \theta' \\ S_X & \stackrel{\leftarrow}{\leftarrow} & X' \end{array}$$

in which X' is the Stein factorization of X for θ , and η , β are canonical maps and θ' is induced by θ . It is easy to check that θ' is finite, β is finite outside a compact set. This implies that X' is 0-convex. By Theorem 1.1 we infer that Y is 0-convex.

1.6 COROLLARY. Let θ : $X \to Y$ be a proper holomorphic surjective map and X be 0-convex. Then Y is also 0-convex.

PROOF. Considering the commutative diagrams (10) and (16) and by Theorem (1.1), without loss of generality we may assume that Y is normal. Hence Y is holomorphically convex. Consider the commutative diagram:

$$\begin{array}{ccc} X & \stackrel{\theta}{\rightarrow} & Y \\ \theta_X \downarrow & & \downarrow \theta_Y \\ S_X & \stackrel{\rightarrow}{\rightarrow} & S_Y \end{array}$$

Since θ_X is finite outside a compact set, and $\tilde{\theta}$ is finite, it follows that θ_Y is finite outside a compact set. Hence Y is 0-convex.

- 1.7 Remark. Corollary (1.6) is not true for the holomorphically convex property [7].
- **2.** The invariance of cohomological q-completness. A complex space X is called cohomologically q-complete (resp. cohomologically q-convex) if and only if $H^p(X, \mathcal{S}) = 0$ (resp. dim $H^p(X, \mathcal{S}) < \infty$) for every coherent ideal subsheaf \mathcal{S} of \mathcal{O}_X and for every p > q.

In this section we prove the following theorem.

2.1 THEOREM. Let $\varphi: X \to Y$ be a finite holomorphic surjective map. Then X is cohomologically q-complete if and only if Y is. If, moreover, dim $X < \infty$ then X is cohomologically q-convex if and only if Y is.

PROOF. Since φ is finite it follows that if Y is cohomologically q-complete (resp. cohomologically q-convex) then X is too.

As in the proof of Theorem 1.1(a) it follows that if dim $X < \infty$ and X is cohomologically q-complete (resp. cohomologically q-convex), then so is Y.

Thus to find the proof of the theorem it suffices to prove the following

2.2 ASSERTION. Let $X = \bigcup_{k=1}^{\infty} X_k$, X_k is the union of all irreducible branches of X of dimension $\prec k$. If X_k is cohomologically q-complete for every $k \geqslant 1$, then X is also cohomologically q-complete.

PROOF. Let $\mathscr S$ be a coherent ideal subsheaf of $\mathscr O_X$ and $J_k=\mathscr T_{X_k}$ —the ideal subsheaf of $\mathscr O_X$ associated to X_k . By $\eta_k\colon \mathscr O_X\to \tilde{\mathscr O}_{X_k}$ denotes the canonical map. Put $\mathscr S_k=\eta_k(\mathscr S)$. Since any open set in X is contained in some X_k it follows that

$$\mathscr{S} = \lim_{\longleftarrow} \big\{ \mathscr{S}_k, \omega_k^j \big\},\,$$

where $\omega_k^j \colon \mathscr{S}_k \to \mathscr{S}_j$ is a canonical map.

Let \mathcal{U} be a Stein open covering of X. By hypothesis we have

(17)
$$H^{p}(\mathcal{U}, \mathcal{S}_{k}) = H^{p}(X, \mathcal{S}_{k}) = H^{p}(X_{k}, \mathcal{S}_{k}) = 0$$

for every p > q and so

(18)
$$\operatorname{Im}\left\{H^{p-1}(\mathscr{U},\mathscr{S}_{k+1})\to H^{p-1}(\mathscr{U},\mathscr{S}_{k})\right\}=H^{p-1}(\mathscr{U},\mathscr{S}_{k})$$

for every p > q and $k \ge 1$.

Consider $\sigma \in Z^p(\mathcal{U}, \mathcal{S})$, p > q. By (17) for each $k \ge 1$ we find $\beta_k' \in C^{p-1}(\mathcal{U}, \mathcal{S}_k)$ such that $\delta^{p-1}\beta_k' = \eta_k \sigma$. Put $\beta_1 = \beta_1'$ and consider $\omega_2^1\beta_2' - \beta_1$. Since $\delta^{p-1}(\omega_2^1\beta_2' - \beta_1) = 0$, by (18) with k = 1 we find $\beta_2'' \in Z^{p-1}(\mathcal{U}, \mathcal{S}_2)$ such that

$$\omega_2^1(\beta_2'' - \beta_2') + \beta_1 = \delta^{p-2}\gamma$$
 for some $\gamma \in C^{p-2}(\mathcal{U}, \mathcal{S}_1)$.

Since \mathscr{U} is a Stein open covering, there exists $\tilde{\gamma} \in C^{p-2}(\mathscr{U}, \mathscr{S}_2)$ such that $\omega_2^1 \tilde{\gamma} = \gamma$. Put

$$\beta_2 = -\beta_2^{\prime\prime} + \beta_2^{\prime} + \delta^{p-2}\tilde{\gamma}.$$

Then $\delta^{p-1}\beta_2 = \eta_2\sigma$ and $\omega_2^1\beta_2 = \omega_2^1(\beta_2' - \beta_2'') + \omega_2^1\delta^{p-1}\tilde{\gamma} = \omega_2^1(\beta_2' - \beta_2'') + \delta^{p-1}\omega_2^1\tilde{\gamma}$ = $\omega_2^1(\beta_2' - \beta_2'') + \beta_1 + \omega_2^1(\beta_2'' - \beta_2') = \beta_1$. Continuing this process we get a sequence $\{\beta_n\}$ such that for every $n \ge 1$:

$$\beta_n \in C^{p-1}(\mathcal{U}, \mathcal{S}_n), \quad \delta^{p-1}(\beta_n) = \eta_n(\sigma) \quad \text{and} \quad \omega_{n+1}^n \beta_{n+1} = \beta_n.$$

Thus $\beta = \{\beta_n\} \in C^{p-1}(\mathcal{U}, \mathcal{S})$ and $\delta^{p-1}\beta = \sigma$. Hence $H^p(X, \mathcal{S}) = 0$ and 2.2 is proved.

The following is an immediate consequence of Theorem 2.1.

- 2.3 COROLLARY. X is cohomologically q-complete if and only if every irreducible branch of X is.
- 3. The invariance of the hyperconvexity. We recall that a Stein space X is called hyperconvex (resp. strongly hyperconvex) if there exists a plurisubharmonic (resp. strictly plurisubharmonic) negative exhaustion function on X [8]. In this section the following theorem is proved.
- 3.1 THEOREM. Let θ : $X \to Y$ be a finite holomorphic surjective map of finite-dimensional complex spaces. Then:
- (i) If Y is strongly hyperconvex having a strictly plurisubharmonic negative exhaustion C^2 -function, then X is strongly hyperconvex.
- (ii) If Y is irreducible and X is strongly hyperconvex having a strictly plurisub-harmonic negative exhaustion C^2 -function, then Y is strongly hyperconvex.

We need the following.

3.2 LEMMA. If X is strongly hyperconvex and Y is normal, then so is Y.

PROOF. Let ψ be a strictly plurisubharmonic negative exhaustion function of X. By the integer lemma [4] we infer that θ : $X \to Y$ is an analytic covering. Thus we can define a function φ on Y by the formula

(19)
$$\varphi(y) = \operatorname{Tr}_{\theta}(\psi)(y) = \sum_{\theta x = y} \psi(x)$$

(the points of $\theta^{-1}(y)$ being counted with the right multiplicity).

Since $\psi < 0$ it follows that φ is an exhaustion function. First we prove that φ is plurisubharmonic. By a theorem of Fornaess and Narasimham [5] it suffices to show that $\varphi \sigma$ is subharmonic for any holomorphic map σ of unit disc $D \subset C$ into Y.

Given such a map $\sigma: D \to Y$, consider the commutative diagram:

$$\begin{array}{ccc} (D \times_{Y} X)_{\text{red}} & \stackrel{\tilde{\sigma}}{\to} & X \\ & & \downarrow \theta \\ & D & \to & Y \end{array}$$

in which θ and $\tilde{\theta}$ are analytic coverings. It is easy to see that the branching order $O_{\tilde{\theta}}(x) = O_{\tilde{\theta}}(\sigma x)$ for any $x \in (D \times_Y X)_{\text{red}}$. Thus $(\text{Tr}_{\theta} \psi)\sigma = \text{Tr}_{\tilde{\theta}}(\psi \tilde{\sigma})$. Hence it remains to show that $\text{Tr}_{\tilde{\theta}}(\psi \tilde{\sigma})$ is subharmonic. The problem is local on D, whence, without loss of generality, we can assume that there exists an embedding e: $(D \times_Y X)_{\text{red}} \to C^n$ for some n. Then we have the commutative diagram:

$$(D \times_{Y} X)_{\text{red}} \stackrel{\tilde{e} = (\tilde{\theta}, e)}{\longrightarrow} D \times \mathbb{C}^{n}$$

$$\tilde{\theta} \searrow \qquad \qquad \downarrow \tilde{\pi}$$

in which $\tilde{\pi} \mid A: A \to D$, $A = \tilde{e}(D \times_Y X)_{red}$, is an analytic covering. Since

$$\operatorname{Tr}_{\tilde{\theta}}(\psi\tilde{\sigma})\circ\tilde{e}^{-1}|_{A}=\operatorname{Tr}_{\tilde{\pi}}(\psi\circ\tilde{\sigma}\circ\tilde{e}^{-1}|_{A}),$$

the subharmonicity of $\operatorname{Tr}_{\tilde{\theta}}(\psi \tilde{\sigma})$ follows from a lemma of [5].

If σ is a C^2 -function on a neighborhood V of a point $y_0 \in Y$ such that partial derivatives of order ≤ 2 have sufficiently small absolute values, then $\psi + \sigma\theta$ is plurisubharmonic. Since $\operatorname{Tr}_{\theta}(\psi) + \sigma = \operatorname{Tr}_{\theta}(\psi + \sigma\theta)$ we infer that $\operatorname{Tr}_{\theta}(\psi) + \sigma$ is plurisubharmonic. Thus $\operatorname{Tr}_{\theta}\psi$ is strictly plurisubharmonic by definition. The lemma is proved.

3.3 Lemma. If Y is irreducible and \tilde{Y} is strongly hyperconvex, then so is Y.

PROOF. Since Y is irreducible, the normalization map $\nu \colon \tilde{Y} \to Y$ is homeomorphic. Thus $\psi \circ \nu^{-1}$ is a continuous negative exhaustion function on Y, where ψ is that function on Y. Since for every holomorphic map $\sigma \colon D \to Y$ the map $\nu^{-1}\sigma$ is holomorphic, as in the proof of the Lemma 3.2 we infer that $\psi \nu^{-1}$ is strictly plurisubharmonic. Hence Y is strongly hyperconvex.

PROOF OF THEOREM 3.1. (i) Let φ be a strictly plurisubharmonic negative exhaustion C^2 -function on Y. We can assume that Y is embedded in C^n for some n. It is known [6] that there exists a relatively compact Stein open covering $\{U_j\}$ of C^n of finite order and a C^{∞} -partition $\{\rho_j\}$ of unity subordinate to $\{U_j\}$ such that $|D^a\rho_j(x)| \leq C_{\alpha}$ for all α and for all j. Since $\theta^{-1}(U_j)$ is a relatively compact Stein open set, we may find a strictly plurisubharmonic nonnegative ψ_j C^{∞} -function on $\theta^{-1}(U_j)$. We set

$$\psi(x) = \sum_{j} \rho_{j}(\theta x) \psi_{j}(x) + \varphi(\theta x).$$

By calculating $\partial^2 \psi / \partial z \partial \bar{z}$ (in the local coordinate of X) we conclude that in choosing ψ_j such that the absolute values of their partial derivatives of order ≤ 2 is sufficiently small, $\psi(x)$ is a strictly plurisubharmonic negative exhaustion function of X. Hence X is strongly hyperconvex.

(ii) Considering the commutative diagram:

$$\begin{array}{ccc} \left(\, X \times_{Y} \, \tilde{Y} \, \right)_{\mathrm{red}} & \stackrel{\tilde{\theta}}{\to} & \tilde{Y} \\ \\ \downarrow \tilde{\nu} \, \downarrow & & \downarrow \nu \\ X & \stackrel{\theta}{\to} & Y \end{array}$$

of the finite surjective maps, by (i) and by Lemma 3.2 and 3.3 we get strong hyperconvexity of Y. The theorem is proved.

3.4 REMARK. In [3] Diederich and Fornaess have proved that every Stein bounded domain in C^n with C^2 -boundary has a strictly plurisubharmonic negative exhaustion C^2 -function.

REFERENCES

- 1. A. Andreotti and H. Grauert, *Théorèmes de finitude pour la cohomologie des espaces complexes*, Bull. Soc. Math. France **90** (1962), 193-259.
- 2. H. Cartan, *Quotients of complex spaces*, Contributions to Function Theory, Tata Inst. of Fund. Res., Bombay, 1960, pp. 1–15.
- 3. K. Diederich and J. E. Fornaess, Pseudoconvex domain: bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), 129-141.
 - 4. G. Fischer, Complex analytic geometry, Springer-Verlag, Berlin and New York, 1976.
- 5. J. E. Fornaess and R. Narasimhan, *The Levi problem on complex spaces with singularities*, Math. Ann. **243** (1980), 47-72.
 - 6. B. Malgrange, Ideal of differentiable functions, Oxford Univ. Press, 1966.
 - 7. A. Markoe, Invariant of holomorphic convexity, Math. Ann. 217 (1975), 267-270.
- 8. R. Narasimhan, A note on Stein spaces and their normalizations, Ann. Scuola Norm. Sup. Pisa 16 (1962), 327-333.
 - 9. _____, The Levi problem for complex spaces. II, Math. Ann. 146 (1962), 195-216.

INSTITUT DE MATHÉMATIQUES, P. O. BOX 631, BO HO, HANOI, VIETNAM